Modelling Relational Data using Bayesian Clustered Tensor Factorization

نویسندگان

  • Ilya Sutskever
  • Ruslan Salakhutdinov
  • Joshua B. Tenenbaum
چکیده

We consider the problem of learning probabilistic models for complex relational structures between various types of objects. A model can help us “understand” a dataset of relational facts in at least two ways, by finding interpretable structure in the data, and by supporting predictions, or inferences about whether particular unobserved relations are likely to be true. Often there is a tradeoff between these two aims: cluster-based models yield more easily interpretable representations, while factorization-based approaches have given better predictive performance on large data sets. We introduce the Bayesian Clustered Tensor Factorization (BCTF) model, which embeds a factorized representation of relations in a nonparametric Bayesian clustering framework. Inference is fully Bayesian but scales well to large data sets. The model simultaneously discovers interpretable clusters and yields predictive performance that matches or beats previous probabilistic models for relational data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Inference For Probabilistic Latent Tensor Factorization with KL Divergence

Probabilistic Latent Tensor Factorization (PLTF) is a recently proposed probabilistic framework for modelling multi-way data. Not only the common tensor factorization models but also any arbitrary tensor factorization structure can be realized by the PLTF framework. This paper presents full Bayesian inference via variational Bayes that facilitates more powerful modelling and allows more sophist...

متن کامل

Temporal Collaborative Filtering with Bayesian Probabilistic Tensor Factorization

Real-world relational data are seldom stationary, yet traditional collaborative filtering algorithms generally rely on this assumption. Motivated by our sales prediction problem, we propose a factor-based algorithm that is able to take time into account. By introducing additional factors for time, we formalize this problem as a tensor factorization with a special constraint on the time dimensio...

متن کامل

Reducing the Rank of Relational Factorization Models by Including Observable Patterns

Tensor factorization has become a popular method for learning from multirelational data. In this context, the rank of the factorization is an important parameter that determines runtime as well as generalization ability. To identify conditions under which factorization is an efficient approach for learning from relational data, we derive upper and lower bounds on the rank required to recover ad...

متن کامل

Reducing the Rank in Relational Factorization Models by Including Observable Patterns

Tensor factorization has become a popular method for learning from multirelational data. In this context, the rank of the factorization is an important parameter that determines runtime as well as generalization ability. To identify conditions under which factorization is an efficient approach for learning from relational data, we derive upper and lower bounds on the rank required to recover ad...

متن کامل

Learning Multi-Relational Semantics Using Neural-Embedding Models

Real-world entities (e.g., people and places) are often connected via relations, forming multirelational data. Modeling multi-relational data is important in many research areas, from natural language processing to biological data mining [6]. Prior work on multi-relational learning can be categorized into three categories: (1) statistical relational learning (SRL) [10], such as Markovlogic netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009